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Abstract. We investigate the distribution of instanton sizes in the framework of a simplified model for
ensembles of instantons. This model takes into account the non-diluteness of instantons. The infrared
problem for the integration over instanton sizes is dealt with in a self-consistent manner by approximating
instanton interactions by a repulsive hard core potential. This leads to a dynamical suppression of large
instantons. The characteristic features of the instanton size distribution are studied by means of analytic
and Monte Carlo methods. In one dimension exact results can be derived. In any dimension we find a
power law behaviour for small sizes, consistent with the semi-classical results. At large instanton sizes the
distribution decays exponentially. The results are compared with those from lattice simulations.

1 Introduction

1.1 Instantons in gauge theories

In non-abelian gauge theories different topologically non-
trivial configurations have been made responsible for non-
perturbative features [1–5]. An important class are instan-
tons, which are solutions of the Euclidean field equations
with non-vanishing topological charge [6]. They give con-
tributions to the saddle-point approximation of Euclidean
functional integrals, which lead to non-perturbative effects
[7,8]. For a review see [10].

In the dilute gas approximation [8] one considers su-
perpositions of single instantons as quasi saddle points of
the action. These configurations are characterized by the
instanton positions {aj} in four-dimensional space-time,
the instanton sizes {ρj}, and other internal parameters.
For a single instanton the action is

S1 =
8π2

g2
0
, (1)

where g0 is the bare gauge coupling constant. Taking into
account quadratic fluctuations around the one-instanton
solution [7,8] its contribution to the functional integral is

Z1 =
∫
d4a

∫
dρCρ−5 exp

{
− 8π2

g2(1/ρ)

}
, (2)

where g(µ) is the running coupling. In the case of super-
symmetric Yang-Mills theory this formula has even been
established at the two-loop-level, in ordinary Yang-Mills
theory there are higher-order corrections to the integrand
[9]. In one-loop order the running coupling obeys
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g2(µ) =
8π2

b log(µ/Λ)
(3)

where
b =

11N
3

, (4)

and Λ is the renormalization-group invariant scale param-
eter, so that

Z1 =
∫
d4a

∫
dρCρ−5(ρΛ)b . (5)

Therefore the integrand is proportional to ρb−5 and in-
creases with increasing instanton size.

The space-time integral over the instanton position
gives the usual volume factor, which is needed in the large
volume limit in order to get an extensive free energy.
The integral over ρ, however, represents an infrared prob-
lem. Where the instanton density becomes important, for
ρ ≥ O(1/Λ), we leave the region of valididty of the semi-
classical expansion because the running coupling becomes
too large.

It should be noted that the apparent infrared diver-
gence in (5) is an artifact of using the one-loop formula for
g2(1/ρ) long after it has become invalid, i.e. for ρ ≥ 1/Λ.
Nevertheless we are confronted with the infrared problem
in the size integration for the single instanton contribu-
tion Z1. If the semiclassical approximation is meaningful
at all, a solution of this problem in the context of the full
instanton ensemble is required.

The quasi saddle points composed of any number of in-
stantons and anti-instantons are treated as independent in
the dilute gas approximation. Consequently their contri-
butions exponentiate in the usual way. The problem with
the integration over the sizes persists and has to be dealt
with. The simplest way is to cut the integrations off at
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some ad-hoc value ρc. But since the integrand increases
with increasing ρj the dominant contribution comes from
large ρj near the cut-off where the assumption of dilute-
ness fails. Moreover the introduction of an ad-hoc cut-off
leads to inconsistencies with the renormalization group
[11].

In order to solve the problem of the instanton size in-
tegrations is has been proposed that instanton sizes are
cut off in a dynamical way [11,12]. The dynamical cut-
off should originate from configurations where instantons
start to overlap. Configurations of overlapping instantons
have an action which deviates from the sum of the single
instanton actions. Therefore large instantons feel an in-
teraction. Additionally, the fluctuations around the multi-
instanton configurations contribute to the instanton inter-
action. The interaction between instantons is expected to
suppress overlapping instantons and to result in a dynam-
ical self-consistent cut-off.

Some consequences of this picture have been discussed
in [11,12], based on certain assumptions about the repul-
sive instanton interactions. In [12] a temporary infrared
cut-off was introduced by means of a finite space-time
volume V . The large V limit was then considered with
the help of renormalization group arguments. This led to
some general results independent of the specific form of
the repulsive instanton interactions. In particular, a finite
renormalization factor

4
b

=
12

11N
(6)

appears in some quantities, e.g. in the trace anomaly [11],
correcting inconsistencies with the renormalization group.
The same factor is conjectured to multiply the instanton
singularities in the Borel plane, which then coincide with
the infrared renormalons. The conclusions were supported
by considering a model of the instanton ensemble, where
the repulsive interaction is approximated by a hard core.

The theory of instanton ensembles with a dynamical
size cut-off has been developed further by Shuryak [13],
see [10] for a review. In his model of an “instanton liquid”
various observables have been calculated and related to
hadronic phenomenology.

In connection with the dynamical cut-off the distribu-
tion of instanton sizes is of central importance. The size-
distribution reflects the way in which large instantons are
suppressed and thus gives information about the instanton
interactions. In recent years it has been studied by means
of lattice Monte Carlo calculations by different groups [14–
17]. For small sizes the distribution is predicted to be

n(ρ) ∼ ρb−5 (7)

by the dilute gas approximation as well as by the “instan-
ton liquid model”, in accordance with (5). For large sizes
ρ, where the dynamical cut-off is in effect, not much is
known about the distribution. There are arguments [11,
18,19] in favour of a suppression like

n(ρ) ∼ exp(−cρp) with p = 2 . (8)

In this article we investigate the distribution of instan-
ton sizes in a model [12] where the instanton interactions

are approximated by a repulsive hard core of variable size.
Although this approximation appears to be crude, the gen-
eral features of the instanton ensemble with a dynamical
cut-off are present. In particular, using analytical and nu-
merical methods we calculate the asymptotic behaviour
for small and for large sizes ρ and compare them with re-
sults from Monte Carlo simulations of lattice gauge theory.
More details can be found in [20].

In [12] it has been conjectured that the distribution
n(ρ) is affected by the finite renormalization factor 4/b in
such a way that for small ρ asymptotically

n(ρ) ∼ ρ−1ρ
4
b (b−4) . (9)

Using the simplified model, we shall show below that this
conjecture is wrong and that instead the semiclassical re-
sult (7) holds.

1.2 Simplified model for ensembles of instantons

Consider an ensemble of instantons in d space-time dimen-
sions. In the spirit of [12] we introduce a finite volume
V and study the approach to the thermodynamic limit
V → ∞.

In the sector with instanton number K the partition
function is written as

ZK(V ) =
CK

K!

∫ K∏
i=1

daidρi
K∏
j=1

ρb−d−1
j

×e−U({ak},{ρk}), (10)

where the instanton positions and radii are denoted {ai,
ρi}. C is a constant, whose numerical value is unimportant
here, b = 11N/3 for SU(N) Yang-Mills theory, and U
represents the interaction potential between instantons.
Distances are measured in units of Λ−1.

In our simplified model the repulsive potential is ap-
proximated by a hard core potential. The radius of an
instanton core varies proportional to the size ρ of the in-
stanton. In a finite volume V this means

e−U({ai},{ρi}) = Θ({ai}, {ρi}) (11)

with

Θ({ai}, {ρi}) = 1 ,

if




1. ‖ai − aj‖ >
(

τ
v1

) 1
d

(ρi + ρj) ∀i, j, and

2. |aµi | < 1
2V

1
d ∀µ, i, and

3. 0 < ρi <
1
2

(
v1
τ V
) 1

d ∀i
Θ({ai}, {ρi}) = 0 , else.

Here

v1 =
π

d
2

Γ
(
d
2 + 1

) (12)

is the volume of the unit sphere in d dimensions. The pa-
rameter τ specifies the effective volume τρdj of an instanton
and is of the order of v1.
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We introduce a reduced distribution by

Zred
K (V, ρK) =

CK

K!

∫ K∏
i=1

dai
K−1∏
j=1

dρj

×
K∏
k=1

ρb−d−1
k Θ({al}, {ρl}) , (13)

such that
ZK(V ) =

∫
dρ Zred

K (V, ρ) . (14)

For the total system with variable instanton number
the grand canonical partition function is

Z(V ) =
∞∑

K=0

ZK(V ), where Z0(V ) = 1 . (15)

We do not distinguish between instantons and anti-in-
stantons in this model. In this way we neglect aspects
of the interactions which differ between instantons and
anti-instantons, but we do not expect that they play a
significant role for our considerations.

The probability distribution of instanton numbers is
given by

PK(V ) =
ZK(V )
Z(V )

. (16)

In order to define the probability distribution of in-
stanton sizes one has to specify how the sizes are sam-
pled. The definition should be made in such a way that it
is compatible with the Monte Carlo calculations to be dis-
cussed later. In the Monte Carlo runs configurations with
a variable number of instantons are produced. A configu-
ration of K instantons contributes K entries to the total
histogram of instanton sizes. Therefore it has a relative
weight proportional to K. Correspondingly the probabil-
ity distribution in the K-instanton sector is normalized to
K [21]:

n̄K(V, ρ) = K
Zred
K (V, ρ)
ZK(V )

. (17)

In the total ensemble the sizes are then distributed ac-
cording to

n̄(V, ρ) =
∞∑

K=1

PK(V )n̄K(V, ρ) (18)

=
1

Z(V )

∞∑
K=1

KZred
K (V, ρ) (19)

with ∫ ∞

0
n̄(V, ρ)dρ = 〈K〉V . (20)

As the expectation value of the instanton number grows
linearly with the volume V one is interested in the rescaled
distribution

n(V, ρ) =
n̄(V, ρ)
V

. (21)

In the following sections we study the properties of n(V, ρ),
and its thermodynamic limit n(ρ), respectively, utilizing
analytical approaches as well as Monte Carlo-methods.

a1

τρ1

a2

τρ2

a3

τρ3

a4

τρ4

Fig. 1. One-dimensional instanton gas, K = 4

2 The one-dimensional instanton gas

In d = 1 dimensions the model can be solved exactly in the
thermodynamic limit. This case illustrates some general
features and can serve as a testing ground for approxima-
tions used in higher dimensions. Therefore we shall discuss
these results before we turn to the consideration of other
dimensions.

In the one-dimensional case the canonical partition
function for a system of spatial length L can be written
as

ZK(L) =
CK

K!

∫ K∏
i=1

daidρi

K∏
j=1

ρb−2
j Θ({ak}, {ρk}) (22)

with

Θ({ai}, {ρi}) = 1 ,

if




1.) |ai − aj | >
(
τ
2

)
(ρi + ρj) ∀i, j, and

2.) |ai| < 1
2L ∀i, and

3.) 0 < ρi <
L
τ ∀i

Θ({ai}, {ρi}) = 0 , else.

This represents a system of rods with variable lengths on
a line. A pictorial representation is given in Fig. 1.

Integration over the instanton positions {ai} yields the
effective free volume of K indistinguishable particles on
the line L:

∫ K∏
i=1

dai Θ({ak}, {ρk}) = Θ̄({ρk})


L− τ

K∑
j=1

ρj




K

,

(23)
with

Θ̄({ρk}) =

{
1, if τ

∑K
j=1 ρj ≤ L

0, else,
(24)

as can be shown by induction. With this result the parti-
tion function reads

ZK(L) =
CK

K!

∫ L
τ

0
dρK · · ·

∫ L
τ −∑K

j=2 ρj

0
dρ1

×
K∏
j=1

ρb−2
j

(
L− τ

K∑
l=1

ρl

)K

. (25)

The integrations over the ρj can be carried out succes-
sively employing

∫ 1

0
xa(1 − x)bdx =

Γ (a + 1)Γ (b + 1)
Γ (a + b + 2)

, (26)
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and one obtains for the size distribution

n(L, ρ) =

{ ∞∑
K=1

KCγK−1 (Γ (b(K − 1) + 2))−1
ρb−2

×(L− τρ)b(K−1)+1

}/
{ ∞∑

K=0

γK(Γ (bK + 1))−1LbK+1

}
(27)

with

γ =
CΓ (b− 1)

τ b−1 . (28)

The asymptotic behaviour for small instanton sizes is
given by the power law

n(L, ρ) ∼ const. ρb−2 for ρ → 0 (29)

in the sense of

b− 2 = lim
ρ→0

ln(n(L, ρ))
ln(ρ)

. (30)

In order to discuss the behaviour for large ρ we take the
infinite volume limit

n(L, ρ) L→∞−→ n(ρ) . (31)

The grand canonical sums can be evaluated by replacing
them by integrals over K and performing a saddle point
approximation, which becomes exact in the large-L limit.
The result is

n(ρ) =
C

b
ρb−2 e−cρ , (32)

with
c = (CΓ (b− 2)τ)

1
b . (33)

In addition to the power law with exponent b−2 = b−d−1
we recognize an exponential suppression of large instanton
sizes. The exponent p in the exponential, cp. (8), is equal
to 1 in one dimension. Our next aim is to see how these
results generalize to higher dimensions d.

3 The general instanton gas

In higher dimensions, d > 1, it is not possible to derive
closed expressions for the partition functions or the size
distributions. The main difficulty is that the integrations
over the instanton positions and the radii cannot be de-
coupled. In particular we have to use approximations for
the effective free volume of sets of instantons in higher
dimensions. Nevertheless one can obtain approximate ex-
pressions for n(V, ρ) and derive its asymptotic behaviour
for small ρ.

The canonical K-instanton partition function ZK(V )
is written as

ZK(V ) =
CK

K!

∫ V̄

0
dv

∫ K∏
i=1

daidρi
K∏
j=1

ραj

×Θ({ak}, {ρk}) δ(v − τ
∑
l

ρdl ) , (34)

where
α = b− d− 1 , (35)

and
v = τ

∑
l

ρdl ≤ V̄ (36)

is the total effective volume of instantons. The maximal
accessible volume V̄ ≤ V accounts for the fact that spheres
in dimensions d > 1 cannot completely occupy a given
volume V .

An approximative decoupling of the integrations can
be achieved through the observation that for given v =
τ
∑

j ρ
d
j the product

K∏
j=1

ραj

develops a sharp maximum at

ρj =
( v

Kτ

)1/d
= ρ0 , j ∈ {1, ...,K} (37)

in the thermodynamic limit. The main idea is then to per-
form a saddle point approximation for the ρ-integrations
near this sharp maximum. The integrations over the po-
sitions aj then correspond to a gas of hard spheres with
equal radii ρ0. With

ρj = ρ0 + δj (38)

and

δ


v − τ

K∑
j=1

ρdj


 ≈ δ


−τdρd−1

0

K∑
j=1

δj




=
ρ1−d
0

2πτd

∫
dq eiq

∑K
j=1 δj (39)

the ρ-integrations can be solved straightforwardly.
In a similar way the reduced partition function Zred

K

(V, ρ) can be evaluated. For a given radius ρ of the Kth

instanton one assigns an effective volume V̄ − τρd to the
remaining K−1 instantons and performs the saddle point
approximation for the integrations over ρ1, . . . , ρK−1 in
terms of Gaussian integrals.

The integral over the instanton positions

1
K!

∫ K∏
j=1

daj Θ({aj}, {ρ0}) (40)

can be estimated with the help of geometrical consider-
ations [22,21,23,12,20]. We use an approximation of the
form

1
K!

∫ K∏
j=1

daj Θ({aj}, {ρ0}) ≈ 1
K!

(V − veff )K , (41)

where
veff = h(d) v , (42)



G.Münster, Ch. Kamp: Distribution of instanton sizes in a simplified instanton gas model 451

and h(d) = V/V̄ measures the inverse filling fraction of
spheres in a volume V . In the one-dimensional case we get
h(1) = 1 because a given length can be completely filled
with rods. For d > 1 we consider h(d) as a parameter.
Lower and upper bounds are given by 1 ≤ h(d) ≤ 2d−1.
For more details on this point see [22,21,23,12,20].

Using these expressions we get by some lengthy but
straightforward calculations for the canonical partition
functions

ZK(V ) ≈
√

α

2π

√
K

d

(√
2π
α

C

(Kτh(d))β−1

)K

×Γ ((β − 1)K)
Γ (βK + 1)

V βK , (43)

and for the reduced ones

Zred
K (V, ρ)

≈
√

α

2π

√
K − 1C ρα

d

(√
2π
α

C

((K − 1)τh(d))β−1

)K−1

×Γ ((β − 1)(K − 1))
Γ (β(K − 1) + 2)

Ṽ β(K−1)+1 , (44)

where
Ṽ = V − h(d)τρd, β =

b

d
. (45)

The next step is to perform the grand-canonical sums
over the instanton numbers K. As in the one-dimensional
case, the sums can be evaluated in the large volume limit
by replacing them by integrals which are calculated by
means of the saddle point method. The error of this ap-
proximation vanishes in the thermodynamic limit. For the
size distribution we get in this way

n(ρ) =
Cd

b
ρb−d−1 exp(−cρd) , (46)

with

c
b
d = C

√
2π

b− d− 1

(
b

d
− 1
) b

d −1

e−( b
d −1) h(d) τ . (47)

For b � d this takes the form

c
b
d = CΓ

(
b

d
− 1
)
d− 1

2 h(d) τ , (48)

which agrees with the one-dimensional result.
The expression for n(ρ) is consistent with the general

expectation mentioned in the introduction: for small ρ it
grows powerlike with an exponent α = b − d − 1, and for
large ρ this power-law is combined with an exponential
decrease.

Although the canonical partition functions are domi-
nated by configurations where the instantons are densely
packed, the exponent α agrees with the one of the semi-
classical dilute gas approximation. This result does not
depend on the details of our approximations and follows

from the general structure of the occuring terms in the
grand-canonical sums. The conjecture, made in [12], that
due to the denseness of instantons the small-ρ behaviour
of n(ρ) gets modified, is therefore wrong.

On the other hand, the value of the exponent p = d in
the exponential decay at large ρ should be considered with
reservations, because it depends on the saddle point ap-
proximations which have been made. In d = 1 dimensions
it is correct, but we would not be surprised, if in higher
dimensions the true value would differ from d. In order
to get more insight into this question and to get an idea
of the quality of the approximations being made so far,
we have also studied the instanton gas by grand canonical
Monte Carlo simulations.

4 Monte Carlo simulations

Usually Monte Carlo calculations are done in the canonical
ensemble. In our case the particle number has to change
and it is necessary to simulate a grand canonical ensem-
ble. Simulations of grand canonical systems are not very
common. They are rarely discussed in the literature and
some important details remain unclear. Therefore it ap-
pears appropriate to describe the algorithm we have used
in our calculations. For related work on this topic we refer
to [24–29].

4.1 Grand canonical Monte Carlo algorithms

A stochastic process, which is realized in a Monte Carlo
simulation, is specified by a transition matrix W (X,Y ),
where X and Y denote states of the system. For the pur-
pose of a simulation W is usually decomposed as a product
of two factors: ω(X,Y ) represents a proposal probability
for a transition from X to Y , and aXY denotes the corre-
sponding acceptance probability. In addition to normaliza-
tion and ergodicity one has to require stationarity, which
is often fulfilled by demanding the stronger Metropolis
condition of detailed balance:

aXY = min
(

1,
ω(Y,X)P (Y )
ω(X,Y )P (X)

)
. (49)

Here P is the probability distribution, which we want to
generate as the stationary distribution of the underlying
stochastic process. In our context it is given by

PK(V ; a1, . . . ,aK , ρ1, . . . , ρK)

=
1

Z(V )
CK

K!

K∏
j=1

ραj Θ({aj}, {ρj}) . (50)

The states X and Y are characterized by the instanton
number K combined with the set of coordinates {aj , ρj}.

In canonical algorithms ω(X,Y ) is usually chosen to
be symmetric so that it is omitted in (49) without fur-
ther comments. This is not possible in a grand canoni-
cal ensemble, where one has to consider transitions that



452 G.Münster, Ch. Kamp: Distribution of instanton sizes in a simplified instanton gas model

change the instanton number. Independent of the choice
of ω(X,Y ) there will be additional volume factors in aXY

for processes that do not conserve the instanton number.
This results from the asymmetry in particle creation and
destruction. If an instanton is created one has to specify
a probability for the generation of its new coordinates,
On the other hand, in the process of removing an instan-
ton such a probability does not occur. In our case, for
the space-coordinates as well as for the radii we choose a
uniform distribution within the allowed volume.

In the algorithm three different kinds of steps occur
with equal probability: creation, destruction and move-
ment of an instanton. With the shortcut notation

, =




1. ‖ai − aj‖ >
(

τ
v1

) 1
d

(ρi + ρj) ∀i, j, and

2. |aµi | < 1
2V

1
d ∀µ, i, and

3. 0 < ρi <
1
2

(
v1
τ V
) 1

d ∀i

we have chosen the following transition rules, where x de-
notes a random number between 0 and 1.

– Creation:
The creation of a new instanton with number K + 1
and coordinates (a′, ρ′) is proposed, and

X →

Y, CV (V v1/τ)

1
d

2(K+1) ρ′α ≥ x and ,

X, CV (V v1/τ)
1
d

2(K+1) ρ′α < x or not , .

– Destruction:
The destruction of an instanton with randomly chosen
number j is proposed, and

X →


Y, 2K

CV (V v1/τ)
1
d
ρ−α
j ≥ x

X, 2K
CV (V v1/τ)

1
d
ρ−α
j < x .

– Movement:
A movement of a randomly chosen instanton in a vol-
ume element [−δa, δa]d × [−δρ, δρ] around the original
coordinates is proposed, and

X →


Y,

(
ρ′

j

ρj

)α
≥ x and ,

X,
(
ρ′

j

ρj

)α
< x or not , .

The simulations were started with the empty configura-
tion (K = 0). Measuring was started after the instanton
number reached saturation.

4.2 Simulation results

In the case of d = 1 dimensions the available exact result
(32) provides a useful check of the Monte Carlo calcula-
tions. In Fig. 2 Monte Carlo data for n(ρ) in d = 1 are
compared with the exact formula. The size L has been
chosen large enough such that finite L effects are negligi-
ble. Obviously the Monte Carlo data agree very well with

0

0.02

0.04

0.06

0.08

0.1

0.12

0 1 2 3 4 5 6 7 8

MC-Simulation
Theory

n( )ρ

ρ

Fig. 2. The size distribution n(ρ) in d = 1 from a Monte
Carlo simulation with C = 1, τ = 2, α = 1, V = L = 2000 in
comparison with the predictions of formula (32)

the theoretical predictions, and the thermodynamic limit
has been approached sufficiently.

With this check on the Monte Carlo algorithm we pro-
ceed to the more interesting case of four space-time di-
mensions (d = 4). In order to compare the Monte Carlo
data with the outcome of our analytical approximations,
(46), we have to make assumptions concerning the param-
eter h(d) = h(4) that describes the ability of instantons
to fill a given volume. We consider three choices, namely
the lower bound h1 = 1, the upper bound h2 = 24−1 = 8
and their geometric mean hg = 2

√
2. The parameter τ is

taken to be equal to v1. For the volume we chose V = 154.
This is based on simulations in different volumes, which
showed that in this case the thermodynamic limit was ap-
proximately reached within the errors of the simulation.
The parameter α is taken to be α = 7/3, which is the
value for SU(2) gauge theory in 4 dimensions.

Figure 3 shows the Monte Carlo data in comparison
with the analytical approximation. Near the maximum
of the distribution the approximation qualitatively repro-
duces the Monte Carlo results. Furthermore, the growth
of the distribution for small instanton radii according to a
power law with exponent α can be confirmed, as is shown
in Fig. 4.

In order to study the behaviour of n(ρ) for large ρ we
considered the ratio

F (ρ) =
n(ρ)
ρα

. (51)

Inspired by the theoretical results we tried fits of the form

Ffit(ρ) = a exp(−cρp) . (52)

The parameter a was obtained by extrapolating F (ρ) to
small ρ. The fit with parameters c and p was then obtained
using the Marquardt–Levenberg-algorithm. We performed
fits for various choices of the model parameters C and α.
In agreement with the theoretical results they showed that
c depends on α, while p is nearly independent of it.

The main interest is in the exponent p. We present the
results for the parameter set C = 1, α = 7/3, V = 154,
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because this value of α is relevant for gauge theory with
gauge group SU(2). For α = 6, the SU(3) case, the results
for p are the same within the present errors. We find a ≈
0.89, and the fit leads to c = 3.3±0.2 and p = 1.9±0.2. In
Fig. 5 the result of a fit in the interval [0, 2.25] is shown.

This Gaussian (p = 2) decay of the probability distri-
bution has already been predicted by some authors under
various assumptions [11,18]. A recent approach based on
an idea of dual superconductivity [19] also leads to the
prediction p = 2. Furthermore good agreement with the
SU(3) lattice gauge theory calculations of Hasenfratz et
al. [17] was found.

The exponent p = 2 differs from the one predicted
by our approximate analytical calculation, p = d. The
saddle point approximation being made is, however, not
beyond any doubt. In that case the exponent originates
from the effective excluded volume being proportional to
ρd at the considered saddle point. This would also coin-
cide with the intuitive expectation based on the following
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Fig. 5. F (ρ) = n(ρ)/ρα in d = 4 dimensions from a Monte
Carlo simulation with C = 1, α = 7/3 (SU(2)), V = 154

in comparison with the fit Ffit(ρ) with a = 0.89, c = 3.24,
p = 1.92, plotted on a logarithmic scale

picture. In the presence of a large instanton of size ρ the
remaining ones are excluded from a volume ∼ ρd. If they
behave like a dilute gas, one would expect that the ex-
cluded volume yields a suppression factor ∝ exp(−cρd).
The instanton ensemble in the effective remaining volume
is, however, dominated by dense configurations, as the an-
alytical calculation shows. Therefore the intuitive picture
should be considered with reservations. Indeed, the calcu-
lations of [11] take into account excluded volume effects in
the framework of the theory of grand canonical pair dis-
tribution functions and, also employing certain approxi-
mations, arrive at p = 2.

In recent years much effort has been devoted to lat-
tice Monte Carlo calculations of properties of the instan-
ton ensemble. There are still ambiguities due to smooth-
ing procedures and only data with little statistics are yet
available. Nevertheless some quantitative statements have
been given. Concerning the size distribution for small ρ,
lattice calculations appear to support the power law (7)
rather than (9). A nice plot, using data of [16], can be
found in [30]. For the large-ρ distribution, de Forcrand et
al. predict an exponential decrease with p = 3 ± 1 from
their SU(2) lattice data [15]. In contrast to this, Smith
and Teper conclude form their SU(3) simulations a decay
according to ρ−ξ with ξ ≈ 10 . . . 12 [16].

5 Conclusion

We have studied the distribution of instanton sizes ρ in
the framework of a model, where instanton interactions
are approximated by a hard core potential with variable
radius. This model incorporates the basic features of a
dynamical cut-off on large instanton sizes. In the one-
dimensional case an exact formula can be derived, which
yields a power-like growth ∼ ρα for small radii ρ and an
exponential decay for large ρ.

In four space-time dimensions we employed analytical
approximations as well as Monte Carlo simulations. The
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theoretical calculations generalize the one-dimensional re-
sults and give a power-like behaviour for small ρ. For large
radii ρ they overestimate the decay which is found in the
Monte Carlo data. Fits to the numerical Monte Carlo re-
sults suggest a behaviour like

n(ρ)
ρ→∞∼ exp(−cρ2) , (53)

in agreement with some other work on gauge theories.
The results indicate that our simplified model repro-

duces the main features of instanton ensembles with a dy-
namical infrared cut-off. Definite results about properties
of instanton ensembles can of course only be expected from
future Monte Carlo calculations of lattice gauge theories.
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